x2a2+λ+y2b2+λ=1⋯(i)
Differenting w.r.t x,
⇒2xa2+λ+2yb2+λ⋅dydx=0xa2+λ=−yb2+λ⋅dydx⋯(ii)
Substituting in (i),
⇒−xyb2+λ⋅dydx+y2b2+λ=1⇒b2+λ=y2−xydydx⇒λ=y2−xydydx−b2
from (i),
x2a2−b2+y2−xydydx+y2y2−xydydx=1⇒x2(y2−xydydx)+y2(a2−b2+y2−xydydx)=(a2−b2+y2−xydydx)(y2−xydydx)
in the above equation,
Degree of dydx is 2.
∴ degree of D.E. is 2.