The degree of the differential equation satisfying the relation
√1+x2+√1+y2=λ(x√1+y2−y√1+x2) is
1
On putting x=tan A, y=tan B we get
sec A+sec B=λ(tan A sec B – tan B sec A)
cos A + cos B=λ(sin A – sin B)
tan (A−B2)=1λ
tan−1 x−tan−1 y=2 tan−1 1λ
On differentiating 11+x2−11+y2 dydx=0