Given
1√4x+1⎡⎣(1+√4x+12)7−(1−√4x+12)7⎤⎦=127√4x+1[(1+√4x+1)7−(1−√4x+1)7]
We know that,
(1+x)7−(1−x)7=2[ 7C1x+ 7C3x3+…+ 7C7x7]
Putting x=√4x+1, we get
1√4x+1⎡⎣(1+√4x+12)7−(1−√4x+12)7⎤⎦=227√4x+1[ 7C1(√4x+1)+ 7C3(√4x+1)3+…+ 7C7(√4x+1)7]=126[ 7C1+ 7C3(√4x+1)2+…+ 7C7(√4x+1)6]=126[ 7C1+ 7C3(4x+1)+…+ 7C7(4x+1)3]
Hence, the degree of the polynomial is 3