Given, x=24−2P3
P=12−32x
(i) Revenue function R(P)=Px=P(24−2P3)
=8P−23P2
Revenue function R(x)=Px=(12−32x)x
12x−32x2
(ii) For maximum revenue, dR(P)dP=8−43P=0⇒P=6
and d2R(P)dP2=−43(<0)
For maximum revenue, dR(x)dx=12−3x=0 ⇒ x=4
and d2R(x)dx2=−3(<0)
∴ Price is 6 and no. of units is 4 for which the revenue is maximum.