wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The derivative of asecx with respect to atanx,a>0 is


A

secxasecx-tanx

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

sinxatanx-secx

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

sinxasecx-tanx

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D

asecx-tanx

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C

sinxasecx-tanx


Explanation for the correct answer:

Let u=asecx and let v=atanx,a>0

Determine dudx, for u=asecx,

Taking log on both sides we have,

logu=logasecxlogu=secxloga[logax=xloga]

Differentiating with respect to x, we have,

1ududx=logasecxtanx

dudx=ulogasecxtanx

Substitute the value of u

dudx=asecx×loga×secx×tanx

Determine dvdx. for v=atanx

Taking log on both sides we have,

logv=logatanxlogv=tanxloga[logax=xloga]

Differentiating with respect to x, we have,

1vdvdx=loga×sec2x

dvdx=vloga×sec2x

Substitute the value of v,

dvdx=atanx×loga×sec2x

We know that, dudv=dudxdvdx

=asecx×loga×secx×tanxatanx×loga×sec2x

=tanxsecx×asecx-tanx

=sinx×cosxcosx×asecx-tanx[secx=1cosxandtanx=sinxcosx]

=sinx×asecx-tanx

Hence, dudv=sinxasecx-tanx

Therefore, the correct answer is option (C)


flag
Suggest Corrections
thumbs-up
10
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Continuity in an Interval
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon