The correct option is B −4
Let y=cosec−1(12x2−1) and z=√1−x2
We have,
y=cosec−1(12x2−1)
⇒y=sin−1(2x2−1)=π2−cos−1(2x2−1)
⇒y=⎧⎪
⎪⎨⎪
⎪⎩π2−2cos−1x, if 0≤x≤1−3π2+2cos−1x, if −1≤x≤0
⇒dydx=⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩2√1−x2, if 0<x<1−2√1−x2, if −1<x<0
and,
z=√1−x2⇒dzdx=−x√1−x2 for all x∈(−1,1)
∴dydz=dy/dxdz/dx=⎧⎪
⎪⎨⎪
⎪⎩−2x, if 0<x<12x, if −1<x<0
⇒(dydz)x=1/2=−4