The correct option is B 14
Let y=tan−1(√1+x2−1x) and z=tan−1(2x√1−x21−2x2)
Substitutin x=tanθ in y, we get
y=tan−1(secθ−1tanθ)=tan−1(tanθ2)=12tan−1x
∴dydx=12(1+x2)
Substituting x=sinθ in z, we get
z=tan−1(2sinθcosθcos2θ)=tan−1(tan2θ)=2θ=2sin−1x
∴dzdx=2√1−x2
Thus, dydz=dydxdzdx=14(1+x2)√1−x2 or (dydz)x=0=14