The correct option is B 7x(8ex−4xex−x)(4ex−x)2
It’s easy to figure out that the function is quotient of two functions 7x2 and 4ex−x. So we will use the quotient rule which says
ddx(f(x)g(x))=f′(x)×g(x)−g′(x)×f(x)(g(x))2
f(x) here is 7x2, f′(x)=14x
g(x) here is 4ex−x, g′(x) will be 4ex−1
Just substitute the terms in the formula and the derivative will be
(4ex−x)(f′(x))−7x2×g′(x)(g(x))2=(4ex−x)×(14x)−(7x2)×(4ex−1)(4ex−x)2
=56xex−14x2−14x2−(28x2ex−7x2)(4ex−x)2
=56xex−14x2−28x2ex+7x2(4ex−x)2
=7x(8ex−4xex−x)(4ex−x)2.