The derivative of fx=32+xat the point x0=-3 is
3
-3
0
does not exist
Explanation for the correct option:
Differentiating the given function:
fx=32+xWeknowthatf'c=limh→0fc+h-fch(Differenciationbyfirstprinciple)Here,c=-3,Sof'(-3)=limh→0f(-3+h)-f(-3)h=limh→032+-3+h-32+-3h=limh→032-3+h-32-3hf'(-3)=limh→03-1+h-3-1h=limh→03h-1-3×1hSinceh→0,soh-1<0⇒h-1=-h-1=-h+1=(1-h)Thereforef'-3=limh→031-h-3h=limh→03-3h-3h=limh→0-3hh=-3Hence,f'-3=-3
Therefore, the correct answer is option (B).
Given f(x) is continuos at x0, for f(x) to be differentiable at x0, the left hard Derivative and the right hand Derivative must exist finitely.