The derivative of f(x)=|x3| atx=0 is
0
10
-1
not defined
Explanation for the correct option:
Finding the derivative of the given function:
fx=|x3|f(x)=x3,xβ₯ΞΏf(x)=-x3,x<ΞΏ
Using the formulaf(x)=limhβxΒ±(fx-h-fxx-h-x)
Now LHD at x=ΞΏ
=limhβ0-f0-h-f00-h-0=limhβ0-f-h-f0-h=limhβ0---h3-0-h=limhβ0--h2=0
Therefore LHD=0
Now, RHD at x=ΞΏ
=limhβ0+f0+h-f00+h-0=limhβ0+fh-0h=limhβ0+h3-0h=limhβ0+h2=0Therefore,LHD=RHD=0f'0=0
Therefore, the correct answer is option (A).
The derivative of fx=32+xat the point x0=-3 is