The derivative of sec−1(12x2+1) with respect to √1+3x at x=−1/3
We have,
sec−1(12x2+1) with respect to √1+3x
Now, Let u=sec−1(12x2+1)andv=√1+3x
Put x=cosθ,θ=cos−1x
So,
u=sec−1(12cos2θ−1)
u=sec−1(1cos2θ)
u=sec−1sec2θ
u=2θ
u=2cos−1x
On differentiating with
respect to x and we get,
dudx=−21√1−x2
Now,
v=√1+3x
On differentiating this with respect t x and we get,
dvdx=12√1+3xddx(1+3x)
dvdx=32√1+3x
Now,
According to given question,
dudv=dudxdvdx=−2√1−x232√1+3x=−4√1+3x3√1−x2
At the point x=−13
Then,
dudv=−4√1+3×(−13)3√1−(−13)2
dudv=−4√1−13√9−19
dudv=0
Hence,
this is the answer.