The correct option is C 3,for |x|<12 and −3 for 12<|x|<1
Let y=sin−1(3x−4x3)
y can be defined in the interval as,
y=sin−1(3x−4x3)=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩3sin−1x, if |x|≤12π−3sin−1x, if 12<x≤1−π−3sin−1x, if −1≤x<−12
Let z=sin−1x. Then,
Putting this value of z in the interval of y, we get
y=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩3z, if |x|≤12π−3z, if 12<x≤1−π−3z, if −1≤x<−12
On differentiating, we get
⇒dydz=⎧⎪
⎪⎨⎪
⎪⎩3, if |x|<12−3, if 12<|x|<1