The derivative of tan−1(√1+x2−1x) with respect to tan−1(2x√1−x21−2x2) at x = 0, is
Let t=tan−1(√1+x2−1x)
Put x=tanθ
⇒t=tan−1(√1+tan2θ−1tanθ)⇒t=tan−1(secθ−1tanθ)⇒t=tan−1(1−cosθsinθ)
⇒t=tan−1⎛⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜⎝1−1−tan2θ21+tan2θ22tanθ21+tan2θ2⎞⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟⎠
⇒t=tan−1(tanθ2)=θ2⇒t=tan−1x2 .....(i)
u=tan−1(2x√1−x21−2x2)
Put x=sinθ
u=tan−1(2sinθ√1−sin2θ1−2sin2θ)u=tan−1(2sinθcosθcos2θ)u=tan−1(tan2θ)u=2θ⇒u=2tan−1xdudx=2(1+x2) .......(ii)
Using (i) and (ii)
dtdu=12(1+x2)2(1+x2)=14
So option B is correct.