The correct option is C 14
Let y=tan−1(√1+x2−1x) and z=tan−1(2x√1−x21−2x2)
Putting x=tanθ in y, we get
y=tan−1(secθ−1tanθ)
⇒y=tan−1(1−cosθsinθ)
⇒y=tan−1(tanθ2)=θ2
→y=12tan−1x
⇒dydx=12(1+x2)
Putting x=sinθ in z, we get
z=tan−1(2sinθcosθ1−2sin2θ)
⇒z=tan−1sin2θcos2θ⇒z=2θ=2sin−1x
⇒dzdx=2√1−x2
dydz=√1−x24(1+x2)
at x=0, ⇒dydz=14