The correct option is A xsin−1x[lnx+sin−1x√(1−x2)x]
Let y=xsin−1x and z=sin−1x
Taking Logarithm on both sides,
⇒lny=(sin−1x)lnx⇒lny=zlnsinz (∵sinz=x)
Differentiating y w.r.t. z, we get
⇒1ydydz=lnsinz+zcotz∴dydz=xsin−1x[lnx+sin−1x√(1−x2)x](∵cotz=√1−x2x)