The correct option is A xsinx(cosxlogx+sinxx)
Given, y=xsinx
On taking log both sides, we get
logy=sinxlogx
On differentiating both sides with respect to x, we get
1y⋅dydx=sinxddxlogx+logxddxsinx
⇒1y⋅dydx=sinx⋅1x+logx⋅cosx
⇒dydx=y(sinxx+logx⋅cosx)
⇒dydx=xsinx(sinxx+logxcosx).