The determinant ∣∣ ∣ ∣ ∣∣1ab1a+1b1bc1b+1c1ca1c+1a∣∣ ∣ ∣ ∣∣ is equal to
0
Δ=∣∣ ∣ ∣ ∣∣1ab1a+1b1bc1b+1c1ca1c+1a∣∣ ∣ ∣ ∣∣Δ=abc∣∣ ∣ ∣ ∣∣11c1a+1b11a1b+1c11b1c+1a∣∣ ∣ ∣ ∣∣Δ=abc∣∣ ∣ ∣ ∣ ∣∣11c(1a+1b+1c)11a(1a+1b+1c)11b(1a+1b+1c)∣∣ ∣ ∣ ∣ ∣∣(C3→C3+C2)Δ=abc(1a+1b+1c)∣∣ ∣ ∣ ∣∣11c111a111b1∣∣ ∣ ∣ ∣∣=0