The determinant
∣∣
∣
∣∣b2−abb−cbc−acab−a2a−bb2−abbc−acc−aab−a2∣∣
∣
∣∣ equals to:
(a) abc(b-c)(c-a)(a-b)
(b) (b-c)(c-a)(a-b)
(c) (a+b+c)(b-c)(c-a)(a-b)
(d) None of these
(d) We have,
∣∣
∣
∣∣b2−abb−cbc−acab−a2a−bb2−abbc−acc−aab−a2∣∣
∣
∣∣=∣∣
∣
∣∣b(b−a)b−cc(b−a)a(b−a)a−bb(b−a)c(b−a)c−aa(b−a)∣∣
∣
∣∣=(b−a)2∣∣
∣∣bb−ccaa−bbcc−aa∣∣
∣∣
[on taking (b-a) common from C1 and C3 each]
=(b−a)2∣∣
∣∣b−cb−cca−ba−bbc−ac−aa∣∣
∣∣ [∵C1→C1−C3]
=0
[since two columns C1 and C2 are identical, the value of determinant is zero]