wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The determinant ∣ ∣sinαcosα1sinβcosβ1sinγcosγ1∣ ∣ is equal to

A
4sinαβ2sinαγ2sinγα2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
sinα+sinβ+sinγ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
sin(αβ)+sin(βγ)+sin(γα)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
A 4sinαβ2sinαγ2sinγα2
C sin(αβ)+sin(βγ)+sin(γα)
Expanding along with C3
∣ ∣sinαcosα1sinβcosβ1sinγcosγ1∣ ∣

=1(sinβcosγsinγcosβ)1(sinαcosγsinγcosα)+1(sinαcosβsinβcosα)

=sin(βγ)+sin(γα)+sin(αβ)
Now let A=(βγ),B=(γα),C=(αβ)
we have A+B+C=0
Now
sin(βγ)+sin(γα)+sin(αβ)=sinA+sinB+sinC

=2sinA+B2cosAB2+2sinC2cosC2

=2sinC2cosAB2+2sinC2cos(A+B)2

=2sinC2(cosAB2cosA+B2)

=2sinC2(2sinA2sinB2)

=4sinA2sinB2sinC2

4sin(βγ)2sin(γα)2sin(αβ)2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon