The determinant ∣∣ ∣∣xp+yxyyp+zyz0xp+yyp+z∣∣ ∣∣=0, if
x, y, z are in G.P.
△=∣∣
∣∣xp+yxyyp+zyz0xp+yyp+z∣∣
∣∣=0
Now R3→R3−pR1−R2
∣∣
∣
∣∣px+yxypy+zyz−(xp2+2py+z)00∣∣
∣
∣∣
⇒(y2−xz)(p2x+2py+z)=0⇒y2=xz
x, y, z are in G.P.
So choice (B) is true.