Given:∣∣
∣
∣∣b2−ab b−c bc−acab−a2 a−b b2−abbc−ac c−a ab−a2∣∣
∣
∣∣
Let Δ∣∣
∣
∣∣b2−ab b−c bc−acab−a2 a−b b2−abbc−ac c−a ab−a2∣∣
∣
∣∣
⇒Δ=∣∣
∣
∣∣b(b−a) b−c c(b−a)a(b−a) a−b b(b−a)c(b−a) c−a a(b−a)∣∣
∣
∣∣
Taking (b−a) common from C1 and C2 both
⇒Δ=∣∣
∣∣b b−c ca a−b bc c−a a∣∣
∣∣
Applying c1→c1−c3
⇒Δ=(b−a)2∣∣
∣∣b−c b−c ca−b a−b bc−a c−a a∣∣
∣∣
If any two rows or columns are identical then value of determinant is zero.
Hence, Δ=0 (⸪C1 and C2 are identical)
Hence, correct option is 𝐷