Since, diagonals of a Rhombus intersect each other at right angels.
∴ in ΔAOB,
AB2=OA2+OB2 ........... (1)
BC2=OB2+OC2 ........... (2)
and in ΔCOD,
CD2=OC2+OD2 ........... (3)
and in ΔAOD,
AD2=OA2+OD2 ........... (4)
Above results are obtained by using Pythagorous theorem.
Now, (1)+(2)+(3)+(4) gives
AB2+BC2+CD2+AD2=2(OA2+OB2+OC2+OD2)
=4(OA2+OB2) ...... [Since, OD=OB & OA=OC]
∴AB2+BC2+CD2+AD2=4(OA2+OB2)