The diagonals AC and BD of a parallelogram ABCD intersect each other at the point O.
If ∠DAC = 32° and ∠AOB = 70°, then find the measure of ∠DBC.
In given figure,
Quadrilateral ABCD is a parallelogram.
So, AD ∣∣ BC
∴ ∠DAC = ∠ACB --- ( Alternate angle)
∴ ∠ACB = 32°
∠AOB + ∠BOC = 180° --- (Linear pair)
⇒70° + ∠BOC = 180° ---- (∠AOB = 70°)
∴ ∠BOC = 180° - 70° = 110°
In △BOC,
∠OBC+∠BOC+∠OCB=180°
⟹∠OBC+110°+32°=180° (∠OCB = ∠ACB = 32° & ∠BOC = 110°)
⟹∠OBC=180°−110°−32°
⟹∠OBC=38°
∴∠DBC=38°