The diagonals AC and BD of a parallelogram ABCD intersect each other at the point O. If ∠DAC = 32∘ and ∠AOB = 70∘, then ∠DBC is equal to:
38°
Given,∠AOB=70∘ and ∠DAC=32∘
∴∠ACB=32∘ [AD ∥ BC and AC is transversal]
Now, ∠AOB+∠BOC=180∘ [Linear pair axiom]
⇒∠BOC=180∘−∠AOB=180∘−70∘=110∘
Now,in Δ BOC,we have
∠BOC+∠BCO+∠OBC=180∘ [by angle sum property of a triangle]
⇒110∘+32∘+∠OBC=180∘[∴∠BCO=∠ACB=32∘]
⇒∠OBC=180∘−(110∘+32∘)=38∘
∴∠DBC=∠OBC=38∘