wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The diagonals AC and BD of a parallelogram ABCD intersect each other at the point O. If ∠DAC = 32° and ∠AOB = 70°, then ∠DBC = _______.

Open in App
Solution

Given:
The diagonals AC and BD of a parallelogram ABCD intersect each other at the point O
∠DAC = 32°
∠AOB = 70°




Let ∠DBC be x.

Since, AB || DC
Therefore, ∠DAC = ∠ACB = 32° (alternate angles)


Also, ∠AOB + ∠BOC = 180° (angles on a straight line)
⇒ 70° + ∠BOC = 180°
⇒ ∠BOC = 180° − 70°
⇒ ∠BOC = 110°


In ∆COB,
∠OCB + ∠CBO + ∠BOC = 180°
⇒ 32° + x + 110° = 180°
⇒ x + 142° = 180°
⇒ x = 180° − 142°
⇒ x = 38°

Hence, ∠DBC = 38°.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction to Quadrilaterals
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon