The diagonals of a convex □PQRS intersect at right angles then prove that PQ2+RS2=PS2+QR2
Open in App
Solution
Given: The diagonals of a convex □ABCD intersect at right angles at O. To Prove: PQ2+RS2=PS2+QR2 Proof: In ΔPOS,m∠O=90o ∴PS2=OP2+OS2 ......... (i) In ΔQOR,m∠O=90o ∴QR2=OQ2+OR2 ......... (ii) In ΔPOQ,m∠O=90o ∴PQ2=OP2+OQ2 ......... (iii) In ΔROQ,m∠O=90o ∴QR2=OR2+OS2 ........ (iv) Adding results (3) and (4) PQ2+QR2=OP2+OQ2+OR2+OS2 ∴PQ2+QR2=(OP2+OS2)+(OQ2+OR2) ∴PQ2+RS2=PS2+QR2 ......... [from (i) and (ii)]