∵AC is a diagonal of the || gm ABCD
Refer image,
∴ar(ΔACD)=12ar(gmABCD).......(1)
Now, in ΔAOP and ΔCOQ
AO=CO [∵ Diagonals of || gm bisects each other]
∠AOP=∠COQ [Vert, opp ∠s]
∠OAP=∠OCQ [Alt. ∠s;AB||CD]
ΔAOP≅ ΔCOQ [By ASA cong. Rule]
Hence, ar(ΔAOP)= ar(ΔCOQ) [Cong. Area axiom]......(2)
Adding ar(quad.AOQD) to both sides of (2), we get
ar(quad.AOQD)+ar(ΔAOP)=ar(quad.AOQD)+ar(ΔCOQ)