The diagonals of a parallelogram ABCD intersect at O. If ∠BOC=90∘ and ∠BDC=50∘, then ∠OAB
(a) 40∘
(b) 50∘
(c) 10∘
(d) 90∘
The correct option is (a) 40∘
We have, ABCD is a parallelogram with diagonals AC and BD intersecting at O.
It is given that ∠BOC=90∘ and ∠BDC=50∘.
We need to find ∠OAB
Now, ∠BOC+∠COD=180∘ (Linear pair)
⇒90∘+∠COD=180∘
⇒∠COD=90∘
Since, O lies on BD.
Therefore, ∠ODC=∠BDC
∠ODC=50∘
By angle sum property of a triangle, we get
∠ODC+∠COD+∠OCD=180∘
⇒50∘+90∘+∠OCD=180∘
⇒140∘+∠OCD=180∘
⇒∠OCD=40∘
Since, O lies on AC.
Therefore,
∠ACD=∠OCD
∠ACD=40∘
Also, DC∥AB
Therefore,
∠OAB=∠ACD [ ∵∠OAB=∠CAB]
∠OAB=40∘