In △OBC,
∠AOD=∠BOC=30∘(vertically opposite angles)
As we know that diagonals of a rectangle are equal and bisect each other so,
OB=OC
In isoceles △BOC,
∠OBC=∠OCB=x
Now, by angle sum property of a triangle,
30∘+x+x=180∘2x=180∘−30∘=150∘x=75∘
So, ∠OCB=75∘
We know that each vertex angle of a rectangle is 90∘. So,
∠OCD+∠OCB=90∘∠OCD+75∘=90∘∠OCD=90∘−75∘∠OCD=15∘
So we have angle ∠OCD=15∘