The difference between greatest and least value of
f(x)=cosx+12cos2x+13cos3x, is
f(x)=cosx+12cos2x+13cos3x
Differentiate w.r.t 'x'
⇒f1(x)=−sinx−sin2x
⇒f1(x)=sin3x−(sinx+sin2x)
For max|min value f1(x)=0
⇒sin3x=sinx+sin2x⇒3sinx−4sin3x=sinx+2sinxcosx
⇒4sin3x−2sinx+2sinxcosx=0⇒sinx(4sin2x−2+2cosx)=0
⇒sinx[4−4cos2x−2+2cosx]=0
⇒sinx[4cos2x−2cosx−2]=0
⇒−2sinx[2cos2x−cosx−1]=0
⇒−2sinx[(2cosx+1)(cosx−1)]=0
So either sinx=0x=0° or cosx=1x=0°
or cosx=−12x=120°
Let a be the maximum value
Let b be the minimum value
for x=0°,f(x)=1+12−13=6+3−26=76=a
x=120°,f(x)=cos120°+12cos240°−13cos360°=−1312=b
a−b=76−(−1312)
=76+1312
=84+786×12
=1626×12
=94
Hence option C is the correct answer