The correct option is C a+b+4=0
Let x1 & x2 be the roots of the equation x2+ax+b=0
Therefore, x1+x2=−a and x1x2=b
and y1 & y2 be the roots of the equation x2+bx+a=0
Therefore, y1+y2=−b and y1y2=a
Given that, x1−x2=y1−y2
⇒(x1+x2)2−4x1x2=(y1+y2)2−4y1y2
⇒a2−4b=b2−4a
⇒(a−b)(a+b+4)=0
Therefore, a−b=0 or a+b+4=0
Ans: C