The correct option is B 3√38
Given, f(x)=cos2x2sinx
⇒f(x)=12(1+cosx)sinx
⇒f(x)=sinx2+sin2x4
Therefore, f′(x)=cosx2+cos2x2
=2cos2x+cosx−12
=(2cosx−1)(cosx+1)2
For maxima or minima, f′(x)=0
⇒cosx=12,cosx=−1
⇒x=π3,π
f(π3)=√34+√38=3√38 = Maximum value
f(0)=f(π)=0 = Minimum value
Required difference =3√38