The difference between the greatest and the least values of the function, f(x)=sin2x−x on [−π2,π2].
A
π
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
√32+π3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−√32+2π3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Aπ f(x)=sin2x−xf′(x)=2cos2x−1=0⇒cos2x=12⇒cos2x=cosπ3x=π6f′′(x)=−2sin2x<0putx=π6f′′(x)=−2sinπ2=2×√32=−√3<0⇒x=π6pointpofmaximaThanmaximumvalueis⇒sin2×π6−π6=√32−π6Theminimumvalueatx=−π2⇒putx=−π2infnsin2π2+π2=−sinπ+π2=π2Minimumvalueis=π2anddifferncebetweenthenis⇒π2⋅(√32−π6)⇒2π3−√32