The difference between the outside and inside surface of a cylindrical metallic pipe 14 cm long is 44 cm2. If the pipe is made of 99 cm3 of metal, find the outer and inner radii of the pipe. [4 MARKS]
Concept: 1 Mark
Application: 3 Marks
Let, external radius = R cm and internal radius = r cm
Then, outside surface
=2πRh=(2×227×R×14) cm2=(88R) cm2.
Inside surface
=2πrh=(2×227×r×14) cm2=(88r) cm2.
Given : Outside surface - Inside surface = 44 cm2
∴(88R−88r)=44
⇒(R−r)=4488=12
⇒(R−r)=12……(i)
External volume
=πR2h=(227×R2×14) cm3=(44R2) cm3.
Internal volume
=πr2h=(227×r2×14) cm3=(44r2) cm3.
Given : External volume - Internal volume = 99cm3
∴(44R2−44r2)=99
⇒(R2−r2)=9944
⇒(R2−r2)=94……(ii)
On dividing (ii) by (i), we get:
(R+r)=(94×21)⇒(R+r)=92……(iii)
Solving (i) and (iii) , we get, R = 2.5 and r =2.
Hence, outer radius = 2.5 cm and inner radius = 2cm.