The difference of the areas of a sector of angle 1200 and its corresponding major sector of a circle of radius 21 cm is
A
1386 cm2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
924 cm2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
462 cm2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
231 cm2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B 462 cm2 Given−OAPBisasectorwithcentralangle=∠AOB=θ=120oandtheradiusofthecircle=r=21cm.i.etheradiusofthesector=r=21cm.Tofindout−thedifferencebetweenar.majorsectorandar.minorsector.Solution−Thear.minorsector=θ360o×π×r2=120o360o×227×212r2=462cm2.Againar.circle=π×r2=227×212cm2=1386cm2.∴ar.majorsector=ar.circle−ar.minorsector=(1386−462)cm2=924cm2.∴ar.majorsector−ar.minorsector=(924−462)cm2=462cm2.Ans−OptionC.