The differential coefficient of the given function loge1+sinx1-sinxis
cosecx
secx
tanx
cosx
Explanation for the correct option:
Simplifying the function:
Simplifying the term inside log:
1+sinx1-sinx=1+sinx21-sin2x (multiplying and dividing by 1+sinx)
=1+sinx2cos2x
Therefore
loge1+sinx1-sinx=loge1+sinx2cos2x=loge1+sinxcosx=logesecx+tanx
ddxlogesecx+tanx=secxtanx+sec2xsecx+tanx=secx ddxlogfx=1f(x)f'xddxsecx+tanx=secx.tanx+sec2x
Hence, option (B) is the correct answer.
The differential coefficient of the function f(x) = asin x, where a is positive constant is: