The correct option is D of degree 1
y=Acos(Bx+D)
⇒y=A[cosBxcosD−sinBxsinD]
⇒y=C1cosBx+C2sinBx, where C1=AcosD,C2=−AsinD
Differentiating w.r.t. x,
y1=−BC1sinBx+BC2cosBx
Again differentiating again w.r.t. x,
y2=−B2C1cosBx−B2C2sinBx
⇒y2=−B2(C1cosBx+C2sinBx)
⇒y2=−B2y
⇒y2y=−B2
Again differentiating again w.r.t. x,
y⋅y3−y2⋅y1y2=0
⇒yd3ydx3=dydx⋅d2ydx2
Hence, order =3 and degree =1
Order can also be determined by the number of independent parameters.
Here A, B and D, all three are independent, hence order is 3.