Given ,
[D2+6D+9]y=6e−3x
So, auxiliary equation is,
⇒m2+6m+9=0
(m+3)2=0
⇒m=−3,−3
So, complimentary function, C.F is →[C1+C2x]e−3x ... (i)
Now, P.I=1D2+6D+96e−3x
For D = -3 case fails so ,
P.I=6xe−3x2D+6
Again for D = -3 case fails so,
P.I=6x2e−3x2=3x2e−3x ... (ii)
Using (1) and (2)
So, complete solution is ,
y=[C1+C2x]e−3x+3x2e−3x
⇒y=[C1+C2x+3x2]e−3x
Now, y(0)=0
⇒0=[C1]e−3.0
⇒C1=0
Also, y(1)=6e−3
⇒[C2+3]e−3=6e−3
⇒C2=3
So, y=[3x+3x2]e−3x
⇒y(−1)=[−3+3]e3=0