The correct option is A y2=x2+2xydydx
General equation of all such circles is (x−h)2+(y−0)2=h2 (i)
where h is parameter
⇒ (x−h)2+y2=h2 (ii)
Differentiating, we get 2(x−h)+2ydydx=0
h=x+ydydx to eliminate h, putting value of h in equation (i),
∴ we get y2=x2+2xydydx