Formation of a Differential Equation from a General Solution
The different...
Question
The differential equation of all the straight lines which are at a constant distance of ′a′ from the origin is
A
(y−x(dydx))2=a2(1+(dydx)2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(y+x(dydx))2=a2(1+(dydx)2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(y−x(dydx))2=a2(1−(dydx)2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(y+x(dydx))2=a2(1−(dydx)2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A(y−x(dydx))2=a2(1+(dydx)2) The equation of lines is, cosα⋅x+sinα⋅y=a
Differentiating w.r.t. x, cosα+sinα⋅y′=0⇒cotα=−y′sinα=1√1+(y′)2cosα=−y′√1+(y′)2−xy′√1+(y′)2+y√1+(y′)2=a∴(y−x(dydx))2=a2(1+(dydx)2)