The correct option is A √ba
Given:
ad2xdt2+bx=0........ (1)
General solution of S.H.M. x=Asin(ωt+ϕ)………..(2) Differentiate (2) equation with respect to ' t '
velocity ,dxdt=Aωcos(ωt+ϕ)
Again differentiating
acceleration d2xdt2=−Aω2sin(ωt+ϕ)=−ω2x
d2xdt2+ω2x=0......... (3)
Dividing with ' a ' in equation (1)
d2xdt2+bax=0....... (4)
comparing equations (3) and (4)
ω2=ba⇒ω=√ba
maximum acceleration amax=ω2A and
maximum velocity vmax=ωA
∴ amaxvmax=ω
or, amaxvmax=√ba
Hence , option (D) is correct.