The differential equation of the family of curves y=e2x(acosx+bsinx), where a and b are arbitrary constants, is given by
A
y2−4y1+5y=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2y2−y1+5y=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
y2+4y1−5y=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
y2−2y1+5y=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cy2−4y1+5y=0 Since, y=e2x(acosx+bsinx) On differentiating w.r.t.x, we get dydx=e2x(−asinx+bcosx)+(acosx+bsinx)2e2x dydx=e2x(−asinx+bcosx)+2y Again differentiating, we get d2ydx2=e2x(−acosx−bsinx)+(−asinx+bcosx)e2x.2+2dydx =−e2x(acosx+bsinx)+2e2x(−asinx+bcosx)+2dydx =−y+2e2x(−asinx+bcosx)+2dydx ∴y2−4y1+5y =−y+2dydx+2e2x(−asinx+bcosx)−4dydx+5y =4y−2dydx+2e2x(−asinx+bcosx) =4y−2e2x(−asinx+bcosx)−4y+2e2x(−asinx+bcosx) =0 Hence, y2−4y1+5y=0