1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Order of a Differential Equation
The different...
Question
The differential equation satisfied by ax
2
+ by
2
= 1 is
(a) xyy
2
+ y
1
2
+ yy
1
= 0
(b) xyy
2
+ xy
1
2
− yy
1
= 0
(c) xyy
2
− xy
1
2
+ yy
1
= 0
(d) none of these
Open in App
Solution
(b) xyy
2
+ xy
1
2
− yy
1
= 0
We have,
ax
2
+ by
2
= 1 .....(1)
Differentiating both sides of (1) with respect to x, we get
2
a
x
+
2
b
y
d
y
d
x
=
0
.
.
.
.
.
2
Differentiating both sides of (2) with respect to x, we get
2
a
+
2
b
d
y
d
x
2
+
2
b
y
d
2
y
d
x
2
=
0
⇒
2
b
y
d
2
y
d
x
2
+
d
y
d
x
2
=
-
2
a
⇒
y
d
2
y
d
x
2
+
d
y
d
x
2
=
-
2
a
2
b
⇒
y
d
2
y
d
x
2
+
d
y
d
x
2
=
-
-
y
x
d
y
d
x
Using
2
⇒
x
y
d
2
y
d
x
2
+
d
y
d
x
2
=
y
d
y
d
x
⇒
x
y
d
2
y
d
x
2
+
x
d
y
d
x
2
=
y
d
y
d
x
⇒
x
y
d
2
y
d
x
2
+
x
d
y
d
x
2
-
y
d
y
d
x
=
0
⇒
x
y
y
2
+
x
y
1
2
-
y
y
1
=
0
Suggest Corrections
0
Similar questions
Q.
Verify that
a
x
2
+
b
y
2
=
1
is a solution of the differential equation
x
(
y
y
2
+
y
2
1
)
=
y
y
1
.
Q.
If
xy
−
log
e
y
=
1
satisfies
the
equation
and
x
(
yy
2
+
y
2
1
)
−
y
2
+
k
yy
1
=
0
,
then
the
value
of
k
is
Q.
The equation of the chord of the circle
x
2
+
y
2
=
a
2
having
(
x
1
,
y
1
)
as its mid-point is