The differential equation whose general solution is given by, y=(c1cos(x+c2))−(c3e(−x+c4))+(c5sinx), where c1,c2,c3,c4,c5 are constants, is
A
d4ydx4−d2ydx2+y=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
d3ydx3+d2ydx2+dydx+y=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
d5ydx5+y=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
d3ydx3−d2ydx2+dydx+y=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bd3ydx3+d2ydx2+dydx+y=0 y=c1cos(x+c2)−(c3e−x+c4)+(c5sinx) ⇒y=c1(cosxcosc2−sinxsinc2)−(c3ec4e−x)+(c5sinx) ⇒y=(c1cosc2)cosx−(c1sinc2−c5)sinx−(c3ec4)e−x ⇒y=lcosx+msinx−ne−x⋯(i)
where l,m,n are arbitrary constant ⇒dydx=−lsinx+mcosx+ne−x⋯(ii) ⇒d2ydx2=−lcosx−msinx−ne−x⋯(iii) ⇒d3ydx3=lsinx−mcosx+ne−x⋯(iv)
Adding equation (i) and (iii), we get d2ydx2+y=−2ne−x⋯(v)
Adding equation (ii) and (iv), we get d3ydx3+dydx=2ne−x⋯(vi)
Adding equation (v) and (vi), we get d3ydx3+d2ydx2+dydx+y=0