wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The differential equation whose general solution is given by, y=(c1cos(x+c2))(c3e(x+c4))+(c5sinx), where c1,c2,c3,c4,c5 are constants, is

A
d4ydx4d2ydx2+y=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
d3ydx3+d2ydx2+dydx+y=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
d5ydx5+y=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
d3ydx3d2ydx2+dydx+y=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B d3ydx3+d2ydx2+dydx+y=0
y=c1cos(x+c2)(c3ex+c4)+(c5sinx)
y=c1(cosxcosc2sinxsinc2)(c3ec4ex)+(c5sinx)
y=(c1cosc2)cosx(c1sinc2c5)sinx(c3ec4)ex
y=lcosx+msinxnex(i)
where l,m,n are arbitrary constant
dydx=lsinx+mcosx+nex(ii)
d2ydx2=lcosxmsinxnex(iii)
d3ydx3=lsinxmcosx+nex(iv)
Adding equation (i) and (iii), we get
d2ydx2+y=2nex(v)
Adding equation (ii) and (iv), we get
d3ydx3+dydx=2nex(vi)
Adding equation (v) and (vi), we get
d3ydx3+d2ydx2+dydx+y=0

flag
Suggest Corrections
thumbs-up
8
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon