The correct option is B [1+(dydx)2]3=a2(d2ydx2)2
(x−h)2+(y−k)2=a2, a is constant ......... (1)
Differentiate (1) w.r.t x
(x−h)+(y−k)y1=0 ........... (2)
Differentiate (2) w.r.t x
1+(y−k)y2+y21=0 .......... (3)
(3) ⇒y−k=−(1+y21)y2
(2) ⇒x−h=(1+y21)y1y2
(1) ⇒(1+y21)y21y22+(1+y21)2y22=a2
⇒(1+y21)3=a2y22
(i.e.) [1+(dydx)2]3=a2(d2ydx2)2 which is required D.E.