The correct options are
A 21+x2, for all x∈(0,∞)
D −21+x2, for all x∈(−∞,0)
Let
y=cos−1(1−x21+x2).Putting x=tan θ, we get⇒y=cos−1(1−tan2θ1+tan2θ)=cos−1(cos 2 θ)Case I: When x∈(0,∞)x=tan θ⇒0<tan θ<∞⇒0<θ<π2⇒0<2θ<π∴y=cos−1(cos 2 θ)⇒y=2 θ=2 tan−1x⇒dydx=21+x2Case II: When x∈(−∞,0)x=tan θ⇒−∞<x<0⇒−π2<θ<0⇒−π<2θ<0∴y=cos−1(cos 2 θ)⇒y=cos−1(cos (−2 θ)] (∵−2θ∈(0,π))⇒y=−2 θ=−2 tan−1x⇒dydx=−21+x2