The correct option is B 12
Let u=tan−1(√1+x2−1x) and v=tan−1xPutting x=tan θ, θ∈(−π2,π2), we getu=tan−1(√1+tan2θ−1tan θ)=tan−1(sec θ−1tan θ)⇒u=tan−1(1−cos θsin θ)=tan−1(2 sin2 θ22 sin θ2 cos θ2)⇒u=tan−1(tan θ2)=θ2=12tan−1 xThus, we have u=12tan−1 x and v=tan−1 x.∴dudx=12×11+x2 and dvdx=11+x2∴dudv=du/dxdv/dx=12