The correct option is A 1
Rearranging the terms we get
(1+10)2005−(10−1)2005+(20−1)2005
=[(1+10)2005+(1−10)2005]−(1−20)2005
In the first bracket, all the even terms will get eliminated.
Hence we are left with
2[1+2005C2102+2005C4104...2005C2004102004]−(1−2005C1201+2005C2202−2005C3203...2005C2005202005)
=2(1+100k)−(1+20m) ...(where m and k are positive integers).
=(200k−20m)+(2−1)
Hence units digits is given by 2−1=1