Let the digits of the number be (a - d), (a), (a + d) (ones, tens and hundred, respectively),
then the number so formed
= 100 (a + d) + 10 (a) + 1 (a - d)
= 100a + 100d + 10a + a - d
= 111a + 99d . . . (i)
Number formed by reversing the digits
= 100(a - d) + 10 × a + 1(a+ d)
= 100a - 100d + 10a + a + d
= 111a - 99d . . . . .(ii)
Now, according to the question,
a + d + a + a - d = 21
⇒ 3a = 21 ⇒ a = 7
Also,
111a + 99d = 111a - 99d + 396 [from Eqs. (i) and (ii)]
⇒ 198d = 396
⇒ d = 2
∴ The number is 975. [from Eq. (i)]