Let the three digits of a positive number be
a−d, a, a+d
∴ a−d+a+a+d=3a=15
⇒ a=5
Original number = 100 (a−d)+10(a)+a+d
= 100a−100d+10a+a+d
= 111a−99d
And, number obtained by reversing the digits
= 100 (a+d)+10(a)+a−d
= 100a+100d+10a+a−d
= 111a+99d
According to the given condition, (111a−99d)−(111a+99d)=594
−198d=594
d=−3
∴ Original number is 111 (5)−99 (−3)
i.e., 852